ASSESSING DYNAMIC APPROACHES IN SNOW WATER EQUVALENT/SNOW DEPTH RETRIEVAL FROM AMSR-E BRIGHTNESS TEMPERATURES

M. Tedesco^{1,2,3}, J. L Foster² and R. E. J. Kelly⁴ With the contribution of T. Markus², R. Reichle² and A. Loew⁵

City University of New York, USA
 NASA Goddard Space Flight Center, USA
 University of Maryland, Baltimore County, USA
 University of Waterloo, Canada
 University of Munich, Germany

MicroRad 2008 – Firenze - Italy

The AMSR-E Snow Water Equivalent

•In 2007, after long time a team has been selected from NASA for funding for maintaining and refining the AMSR-E SWE product:

PI – Tedesco M. (lead, CCNY, NASA) co-PI – Kelly R. (Univ. Waterloo)

co-l's : J. Foster (NASA) E. J. Kim (NASA) J. Wang (NASA)

Collaborators: M. Hallikainen (Finland) C. Derksen (Canada)

Support Specialist: J. Miller (RSIS)

 $SD = FF * \frac{(A^{*}(18V-36V))}{+ (1-FF)^{*} [(A^{*}(10V-36V)) + (B^{*}(10V-18V))}$ cm $(1-FD^{*}0.6)$ Forest
Non-forest
Non-forest
Deep snow

A = f(pol36), B = f(pol18)

Dynamic approaches on grain size growth

- In 2003 Kelly et al. proposed a dynamic approach considering an exponential growth model for grain size combined with an electromagnetic model (DMRT)
- Main hypothesis: snow grains grow along the snow season as an exponential function of the number of days (based on a work by Sturm)
- Results regarding its potential extension to large scale applications are reported here
- Also, results derived when using combined electromagnetic and land surface models driven with meteorological forcing data are reported
- These can support the conceptual development of radiance-based assimilation approaches

 Electromagnetic model → HUT Inputs to the model are as follows:

Tb Modeling

a) Snow depth from ground measurements

b) Grain size is derived from the exponential model

- and it is reduced when snow depth increase to account for the new snow
- c) Density and soil temperature are kept fixed
- d) Air/snow temperature is derived from ground measurements

Comparison between exponential growth modeled (red) and optimum (blue) grain size values

Agata, Russia

NASA

2

5

Grain size (diameter) [mm]

0.5

10/01/02

01/09/03

Day of the year

04/19/03

the Caty College of New York

Dynamic retrieved vs. static snow depth values

Blue = exponential model Red = Chang's algorithm Black = ground data

Grain size is underestimated by the exp. model at the beginning of the season. This leads to an overestimation of snow depth.

NASA

SMART

SNOW MODELLING ALGORITHM AND RETRIEVAL TOOL

M. TEDESCO, A. LÖW, R. REICHLE

• PROVIDING A TOOL FOR THE IMPROVED RETRIEVAL OF SNOW INFORMATION USING REMOTE SENSING DATA

•COUPLING OF DIFFERENT SNOW PROCESS MODELS WITH REMOTE SENSING DATA USING PHYSICALLY BASED RADIATIVE TRANSFER MODELS

•PROVIDING A TOOL FOR THE <u>ASSIMILATION OF SNOW</u> <u>INFORMATION/SATELLITE DATA</u> INTO A PHYSICALLY BASED SNOW PROCESS MODEL

• CODED IN MATLAB/FORTRAN – UNDER TESTING ON 50 WMO STATIONS WORLDWIDE

• PRELIMINARY QUESTIONS WE ARE TRYING TO ANSWER: WHAT IS THE EXPECTED BEHAVIOUR OF DYNAMIC COEFFICIENTS? CAN WE REPRODUCE THIS BEHAVIOUR FROM INFORMATION COMPLEMENTARY TO SATELLITE DATA? IF SO, HOW?

Multi-temporal ingestion Surface of a priori information forcing data 1.5 **EM** estimated Fitted exp. Grain size (diameter) [mm] Land Surface Model $TIME = t_r$ TIME = tSnow parameters Measured/Simulat Effective 0.5 ed Snow depth grain size Sturm exp. Inputs to Agata, 2003 the EM 00 50 100 200 150 model Day of the snow season Electromagnet 3 ic model EM estimated Grain size (diameter) [mm] 2.5 SSM/I Tb Simulated Minimizatio 2 Tb n 1.5 2003 Fitted exp. Snow depth 1 Effective grain size 0.5 Agata, 2005 0, 50 100 150 200

Day of the snow season

NASA

Comparison between EM-estimated and physically-based snow model outputs (SNTHERM)

the

Ingesting snow depth information: from the snapshot algorithm to a multi-temporal approach

				WMO		CLSM		CLSM	WMO
		Chang	Foster	Dynamic	Mod.	Dynamic	Mod.	HUT	HUT
					Static		Static		
RMSE [m]	1	0.57	0.52	0.07	0.1	0.17	0.18	0.39	0.16
	2	0.54	0.50	0.05	0.07	0.12	0.13	0.49	0.13
	3	0.53	0.48	0.06	0.08	0.15	0.15	0.45	0.16
Percentage	1	58.6	55.4	5.1	5.5	63.6	57.5	47.2	7.1
error [%]	2	62	58.9	6	7	49.2	44.3	59.3	8.8
	3	58.4	55.8	5	9.5	59	47.7	58.2	10.6
Correlation	1	0.51	0.45	0.77	0.51	0.73	0.51	0.54	0.6
	2	0.64	0.56	0.82	0.64	0.75	0.64	0.49	0.7
	3	0.84	0.78	0.87	0.84	0.77	0.84	0.58	0.7

Statistics are based on 3 years (2001,2002,2003) data over 49 stations

Conclusions

NASA

- The current AMSR-E algorithm, delivered on Sept. 2005, makes use of a dynamic approach though still conservative
- Factors such as vegetation, atmospheric effects and potential improvement deriving form multisensor approach have been (are being) evaluated
- Grain size modeling is a key aspect for development of future dynamic approaches, especially in view of radiance-based assimilation techniques
- Both simplified and physically-based models cannot consistently reproduce the size of EM effective scatterers, significantly affecting the error on snow depth/SWE retrieval
- Ingesting a-priori information on snow depth/SWE at given time-steps (e.g. from snow model) considerably improves the retrieval (multi-temporal approach instead of snapshot algorithm)

Preliminary analysis at large spatial scale

		2002	2002	2003	2003
Baseline	1.6(18v-36v)/(1-0.2ff)	RMSE	Bias	RMSE	Bias
Snow depth	All Data	24.01	6.49	24.37	6.07
error statistics	FF = 0%	24.63	11.32	26.19	5.68
	0% < FF < 50%	24.60	4.38	23.96	7.05
	FF > 50%	16.82	0.15	18.03	-1.10
		2002	2002	2003	2003
New method	New Algo (Pol >=3)	2002 RMSE	2002 Bias	2003 RMSE	2003 Bias
New method Snow depth	New Algo (Pol >=3) All Data	2002 RMSE 21.83	2002 Bias -1.04	2003 RMSE 22.35	2003 Bias -2.43
New method Snow depth error statistics	New Algo (Pol >=3) All Data FF = 0%	2002 RMSE 21.83 21.41	2002 Bias -1.04 0.78	2003 RMSE 22.35 24.01	2003 Bias -2.43 -4.57
New method Snow depth error statistics	New Algo (Pol >=3) All Data FF = 0% 0% < FF < 50%	2002 RMSE 21.83 21.41 22.76	2002 Bias -1.04 0.78 -2.49	2003 RMSE 22.35 24.01 21.84	2003 Bias -2.43 -4.57 -1.25

Relationship between optimum grain size and surface temperature evolution

