Improved Modeling and Retrieval of Convective Precipitation from Spaceborne Passive Microwave Measurements

William J. Blackwell, Laura J. Bickmeier, Frederick W. Chen, Laura G. Jairam, and R. Vincent Leslie

MIT Lincoln Laboratory, Lexington, MA, USA

10th Specialist Meeting on Microwave Radiometry and Remote Sensing of the Environment

Florence, Italy

March 13, 2008

This work was sponsored by the National Oceanographic and Atmospheric Administration under Air Force Contract FA8721-05-C-0002. Opinions, interpretations, conclusions, and recommendations are those of the authors and are not necessarily endorsed by the United States Government.
Outline

• Radiative transfer validation using high-resolution aircraft measurements and a cloud resolving model
 – Simulation methodology
 – NAST-M aircraft sounder
 – Brightness temperature histograms

• Retrieval of rain rate using passive microwave observations
 – Simulation of ATMS and MIS measurements of precipitation
 – Neural network retrieval methodology
 – Retrieval performance assessment for preliminary, idealized cases

• Summary and future work
Background: Passive Microwave Sensing of Precipitation
Radiative Transfer Modeling and Validation

• Co-located brightness temperature observations and rain rates are needed to train precipitation retrieval algorithms
 – In situ rain rate measurements are sparse over most of the world (especially over ocean)
 – Numerical weather prediction (NWP) data and radiative transfer (RT) models can be used to produce training data

• Model validation is very important – comparison of NWP/RT simulations with NAST-M observations offers insight

• The NAST-M airborne sensor offers well-calibrated, high-resolution (2.5-km) measurements with channels in the 60, 118, 183, and 425-GHz bands

• Two radiative transfer models considered:
 – TBSCAT: Integration of trial functions using initial values
 – TBSOI: Combines “Successive Order of Scattering”, adding-doubling, and multiple streams (discrete ordinates)
Radiance Simulation Methodology

- **CRM** = MM5 1-km saved every 15 min
- **RTM** = multiple-stream radiative transfer solution (TBSCAT† or TBSOI*)
- Simulated NAST-M radiances
- Developed and adapted MIT software to LLGrid parallel computing facility

Radiative Transfer / NWP Interface Issues

Each level requires hydrometeor density per drop radius.

Marshall-Palmer

Sekhon-Srivastava

US Standard 1976

MM5

<table>
<thead>
<tr>
<th>Pressure [mb]</th>
</tr>
</thead>
<tbody>
<tr>
<td>850</td>
</tr>
<tr>
<td>700</td>
</tr>
<tr>
<td>500</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Mass Density [g/m³]</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.00</td>
</tr>
<tr>
<td>0.05</td>
</tr>
<tr>
<td>0.10</td>
</tr>
<tr>
<td>0.15</td>
</tr>
</tbody>
</table>

Radius [mm]

- Rain water
- Snow
- Graupel

100 mb
NAST-Microwave (Airborne Sensor)

- Cruising altitude: ~17-20 km
- Cross-track scanning
- Scan angle: -65° to 65°
- 7.5° antenna beam width (FWHM)
- 2.5-km nadir footprint diameter
- Swath width of ~100 km
- Eight channels at 54 GHz
- Nine channels at 118 GHz
- Six channels at 183 GHz
- Seven channels at 425 GHz
- Nadir-viewing camera

AMSU-A’s diameter at nadir is ~50 km (3.3° IFOV)

Footprint diameter at nadir is ~2.6 km

AMSU-B ~15 km (1.1° IFOV)
Radiative Transfer Validation

* Black asterisks indicate NAST-M observations from ten flights, most during the 2002 CRYSTAL-FACE deployment (41,670 measurements)

* Red asterisks indicate simulated measurements (535,126) consisting of eight hours of MM5 simulation per day (15-min. increments) using a two-stream version of TBSCAT

* Blue asterisks indicate simulated measurements using a ten-stream version of TBSCAT

* Green asterisks indicate simulated measurements using a ten-stream version of TBSCAT; heaviest precipitation was replaced with a TBSOI simulation (for frequencies > 60 GHz)

Methodology based on:

Simulated versus Observed
Black = Observations, Red = Simulations

TBSCAT$_{10}$ + TBSOI$_4$ yields very good agreement, even at the higher precipitation rates (Low T$_b$)

Discrepancies at the warmest T$_b$’s are due primarily to misclassification of precipitating pixels

Very cold T$_b$’s observed near 183 GHz present the greatest challenge – more work is needed
ATMS Simulations vs. AMSU Observations Near 183-GHz

MM5 simulations performed by C. Surussavadee

Precipitation Retrieval Algorithm Methods

• Most current operational algorithms use variational approaches, Bayesian inversion
 – Advantage: Incorporates physics into algorithm
 – Disadvantages
 Computationally intensive
 Difficult to guarantee statistical optimality

• Alternative: Nonlinear regression
 – Neural networks
 Fast, simple, and approach statistical optimality
 Requires no a priori assumptions about statistics of data
 – Preprocessing can be used to transform data into a representation suitable for precipitation estimation
 – Algorithms based on neural networks can produce precipitation estimates in real time
Neural Network Retrieval Algorithm

• Input: all channels and secant of scan angle (Cross-track sensors)

• Target output: MM5 surface rain rate (mm/hr)

• Only pixels with rain rate > 1 mm/hr

• 25 storms over ocean divided among training (9), validation (8), and testing sets (8)

• Total of 10983 ATMS & 56300 MIS pixels

• Training:
 – Levenberg-Marquardt back propagation method, up to 100 epochs
 – Training stopped if RMS error over validation set does not decrease for each of six consecutive epochs
 – Nguyen-Widrow initialization method
 – 1 hidden layer with up to 10 nodes, 1 output node
 – 10 nets trained per topology
MM5 Output for Two Test Cases
(Pacific Ocean)
ATMS Rain-Rate Retrieval Images
Produced at 5.2° Resolution
MIS Rain-Rate Retrieval Images
Produced at 1.5° Resolution
Rain-Rate Retrieval Error Scatter Plots

ATMS Retrieval

MIS Retrieval

RMS Error: 0.83 mm/h
52% reduction of a priori

RMS Error: 1.42 mm/h
61% reduction of a priori
Next Steps

• Simulation infrastructure is in place that will allow generation and optimization of precipitation/radiance training data sets

• Retrieval results presented here are idealistic and preliminary. We need to improve:
 – Comprehensiveness of training data
 – Spatial processing in retrieval algorithm
 – Optimization of neural network topology

• Algorithm enhancements are underway to allow retrieval of precipitation over land

• Radiative transfer optimization/validation will continue to draw from high-resolution NAST-M data sets.
Summary

• Fundamental building blocks are in place for complete precipitation retrieval system:
 – NWP/RT models to produce training data
 – Model validation using NAST-M
 – Retrieval methodology based on neural networks

• Recent studies highlight the need for accurate radiative transfer modeling in regions of heavy precipitation

• AMSU experience and preliminary studies show ATMS can provide accurate, high-resolution, global precipitation products

• Future work will focus on NWP data generation, RT model validation and improvement using NAST-M, and retrieval algorithm optimization
Overview

• Experience with AMSU on POES/Aqua indicates that ATMS could provide accurate retrievals of precipitation parameters
 – Surface rain rate over ocean and land
 – Snowfall

• Delay of MIS deployment until 2016 leaves gap in NPOESS precipitation product availability

• In collaboration with MIT campus group (Prof. Dave Staelin), we are developing real-time, neural-network-based precipitation algorithms for ATMS and MIS (NPP/NPOESS)

• Components of current research:
 – Radiative transfer modeling and validation
 – Retrieval development
Microwave Radiance Simulation

- **MM5 Atmospheric Circulation Model**
 - Provides temperature profile, water vapor profile, hydrometeor profile, ...
 - Used Goddard hydrometeor model (Tao & Simpson, 1993)

- **Radiative Transfer**
 - MW: TBSCAT due to Rosenkranz (IEEE TGRS, 8/2002)
 - Multi-stream, initial-value
 - Improved hydrometeor modeling due to Surussavadee & Staelin (IEEE TGRS, 10/2006)
 - IR: SARTA

- **Filtering ("Satellite Geometry" toolbox for MATLAB)**
 - Accurately filtering T_B’s on MM5 grid to correct geolocation & resolution
 - Toolbox simplifies software development & minimizes approximation errors
ATMS:
Advanced Technology Microwave Sounder

• Heritage
 – AMSU-A/B (NOAA-15, NOAA-16, NOAA-17)
 – AMSU/HSB (Aqua)
 – AMSU-A/MHS (NOAA-18, METOP-A)

• Cross-track scanning, 2500-km swath

• Bands
 – Window channels: 23.8, 31.4, 89.0, 165.5 GHz
 – Channels in 60-GHz O_2 band
 – Channels in 183.31-GHz H_2O band

• Improvements over AMSU
 – Improved spatial resolution in 60-GHz band (35km vs. 50km)
 – Improved spatial sampling in 60-GHz band (15km vs. 50km)
 – Identical spatial sampling across all channels
 – Improved spectral sampling in 183-GHz band (5 channels vs. 3 channels)
 – Swath width (~2500km vs ~2100km)
MIS: Microwave Imager/Sounder
(Conically Scanning)

• MIS specifications TBD
• Heritage: SSMIS, TMI, AMSR-E, WindSat
• For the simulations in this presentation, the following channel set was used:
 – 6.625 GHz (V/H)
 – 10.65 GHz (V/H)
 – 18.7 GHz (V/H)
 – 23.8 GHz (V/H)
 – 36.5 GHz (V/H)
 – 50.3 GHz (V)
 – 52.24 GHz (V)
 – 53.57 GHz (V)
 – 54.905 GHz (V)
 – 55.49 GHz (V)
 – 56.66 GHz (V)
 – 59.38 GHz (V)
 – 59.94 GHz (V)
 – 89.0 GHz (H,V)
 – 166 ± 0.7875 GHz (V)
 – 183.31 ± 0.7125 GHz (V)
 – 183.31 ± 3.10 GHz (V)
 – 183.31 ± 7.7 GHz (V)
Mesoscale and Cloud Models

• Why use mesoscale models?
 – Explicit forecasts of cloud and precipitation hydrometeors
 Clouds
 Convective storms
 – Detailed initial condition specification
 Terrain
 Land-use
 Meteorological observations

• Approach
 – Detailed storm simulations
 – Validate with surface radar observations
 – Apply satellite radiative transfer algorithms
Mesoscale Model v5 (MM5) Parameterizations

- 1 km horizontal resolution
- 32 vertical levels (surface to 100 mb)
- 15 minute resolution output

- Lower/lateral boundary conditions from Rapid Update Cycle (RUC)

- Explicit microphysics (Reisner2 - six phases)
- Boundary layer physics (MRF)
- Radiation scheme (IR SW+LW cloud interactions)

- Cold starts (~ 2-5 hours before target time)