

Small Scale Effects on the Brightness Temperature at 1.4 GHz: Ponding in an Agricultural Field

Cihan Erbas

Iowa State University Electrical Engineering Department Ames, IA, 50011, USA cihan@iastate.edu Brian Hornbuckle Iowa State University Agronomy Department Ames, IA, 50011, USA bkh@iastate.edu

Outline

- Introduction
- Methodology
- Radiative Transfer Models

- Model Descriptions
- Test Case
- ALEX
- Measurements
- Approach
- Numerical Results
- Conclusion

Introduction

- Microwave radiometry is ideal for soil moisture retrieval
- L-band is the optimal frequency band
- Quantitative aspects of the soil moisture observations are not well known

 Validation of soil moisture measurements is a necessary step before remote sensing can effectively contribute to further scientific developments in hydrology, and prediction of global water and energy cycles

Methodology

- Validation: The determination of the space-time statistical structure of the uncertainty of an algorithm or model output
- Validation of remotely-sensed observations of soil moisture through the quantization of the error between the radiative transfer models and radiometric soil moisture measurements
- Understanding the effect of diurnal changes of soil moisture profile, soil temperature profile, and roughness on brightness temperature
- Start with bare soil

• • • • • • • • •

Radiative Transfer Models

 Models generate the brightness temperature as a function of time

- Three models for the validation purposes:
 - Fresnel Model
 - Coherent Model (Njoku-Kong)
 - Incoherent Model

Model Descriptions

Fresnel Model:

- Single-layer model based on the Fresnel reflectivity equation
- Assumes that the dielectric and temperature profiles of the soil are uniform throughout the emitting layer
- It would be an appropriate model to implement in a satellite algorithm

Incoherent Model:

- The soil is treated as a layered dielectric medium
- Emissivity calculations are made on the basis of power rather than computing the field reflection coefficient
- Assumes that the medium consists of a number of scatterers that introduce a randomly distributed phase factor to the wave propagating between two points in the medium
- Propagation becomes an incoherent process described by the power density of the wave

Coherent Model:

- Soil is treated as a layered dielectric medium
- Boundary conditions are applied to the layers to evaluate the electric fields in each layer and after several steps, the coherent emissivity of the system is calculated
- The model is based on the vertical profiles of temperature and soil moisture content

In this study, we are focusing on the coherent model

Test Case

• •

Figure 2. Reflectivity as a function of water layer thickness

ALEX

- ALEX: Atmosphere and Land-surface EXchange model
- The ALEX model is a land surface model that describes the transport of heat, water vapor and carbon within the soil-plant-atmosphere system
- Calculates the time-dependent soil moisture and soil temperature profiles
- Field measurements often provide an insufficient number of inputs to a radiative transfer models
- ALEX increases the accuracy of the radiative
- transfer models
 transfer models

Procedure

Figure 3. Steps to compute the brightness temperature

• • • • • • • • •

Measurements

290 280 L brightness temp (K) 250 200 150 12:00

Figure 4. Measurement sets for the days 143.5-145.25

Figure 5. Measured brightness temperature

Hypothesis: Ponding is the main reason for the abrupt change in the brightness temperature

Figure 6. Picture taken in the field after precipitation

Approach

Step 3

Numerical Results

Ponding [cm]	Т _в [К]
0.0	207.0679
0.5	165.7932
1.0	158.3149
1.5	170.8120
2.0	151.1655
2.5	183.9327
3.0	158.7879

Table 1. Ponding and the resulting brightness temperature values

• Figure 7. Measured and the modeled brightness temperatures (0.5 cm of ponding, no roughness correction)

Figure 8. Measured and the modeled final brightness temperature (0.5 cm of ponding, α =0.7 with roughness correction)

Figure 9. Measured and the modeled final brightness temperature (0.5 cm of ponding, α =0.5 with roughness correction)

Conclusion

- Validation is a necessary step before remote sensing can effectively contribute to further scientific developments
- An extreme change in the brightness temperature is investigated
- Ponding is shown to be the main reason
- Further investigation is needed to determine if ponding is frequent and significant
- Larger scales/satellite applications.