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Introduction
• Microwave radiometry is ideal for soil 
moisture retrieval

• L-band is the optimal frequency band

• Quantitative aspects of the soil moisture 
observations are not well known

• Validation of soil moisture measurements is a 
necessary step before remote sensing can 
effectively contribute to further scientific 
developments in hydrology, and prediction of 
global water and energy cycles
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Methodology
Validation: The determination of the space-time 

statistical structure of the uncertainty of an algorithm 
or model output 

• Validation of remotely-sensed observations of soil 
moisture through the quantization of the error 
between the radiative transfer models and 
radiometric soil moisture measurements 

• Understanding the effect of diurnal changes of soil 
moisture profile, soil temperature profile, and 
roughness on brightness temperature 

• Start with bare soil
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Radiative Transfer Models

• Models generate the brightness temperature 
as a function of time

• Three models for the validation purposes:

• Fresnel Model

• Coherent Model (Njoku-Kong)

• Incoherent Model
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Model Descriptions
Fresnel Model:

• Single-layer model based on the Fresnel
reflectivity equation

• Assumes that the dielectric and temperature 
profiles of the soil are uniform throughout the 
emitting layer

• It would be an appropriate model to implement in 
a satellite algorithm
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Incoherent Model:

• The soil is treated as a layered dielectric medium
• Emissivity calculations are made on the basis of 

power rather than computing the field reflection 
coefficient

• Assumes that the medium consists of a number 
of scatterers that introduce a randomly 
distributed phase factor to the wave propagating 
between two points in the medium

• Propagation becomes an incoherent process 
described by the power density of the wave
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Coherent Model:

• Soil is treated as a layered dielectric medium
• Boundary conditions are applied to the layers 

to evaluate the electric fields in each layer and 
after several steps, the coherent emissivity of 
the system is calculated

• The model is based on the vertical profiles of 
temperature and soil moisture content

In this study, we are focusing on the coherent
model
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Test Case

semi-infinite 

water   (εr1=80-j5)

wet soil    (εr2 =25-j3)

θ1=35 deg

air

depth 

water 

εr=80-j5

wet soil 

εr=25-j3

Figure 1. Test case geometry
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Figure 2. Reflectivity as a function of  water layer thickness
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ALEX
• ALEX: Atmosphere and Land-surface 

EXchange model
• The ALEX model is a land surface model that 

describes the transport of heat, water vapor 
and carbon within the soil-plant-atmosphere 
system

• Calculates the time-dependent soil moisture 
and soil temperature profiles

• Field measurements often provide an 
insufficient number of inputs to a radiative
transfer models

• ALEX increases the accuracy of the radiative
transfer models
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Procedure

RADIATIVE
TRANSFER

MODEL
ALEX

soil moisture profile

soil temperature profile

other inputs

ALEX  inputs Brightness temperature

Figure 3.  Steps to compute the brightness temperature
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Measurements

Figure 4. Measurement sets for the days 143.5-145.25
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Figure 5.  Measured brightness temperature
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Hypothesis: Ponding is the main reason for the 
abrupt change in the brightness temperature

Figure 6. Picture taken in the field after precipitation
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Approach
HighHigh

Low

All low

Ponding allowed

Reproduce ponding

time

Reproduce TB1

time

TB1
Ponding included

Step 1
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Step 2

All high

Ponding not allowed Reproduce TB2

time

TB2

Step 3

Reproduce TB3

time

TB3

TB3 = αTB1 + (1-α) TB2
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Numerical Results
Ponding  [cm] TB [K]

0.0 207.0679

0.5 165.7932

1.0 158.3149

1.5 170.8120

2.0 151.1655

2.5 183.9327

3.0 158.7879

Table 1. Ponding and the resulting brightness temperature values
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Roughness correction needed

Figure 7. Measured and the modeled brightness temperatures    
(0.5 cm of ponding, no roughness correction)
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Figure 8. Measured and the modeled final brightness temperature 
(0.5 cm of ponding, α=0.7   with roughness correction)
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Figure 9. Measured and the modeled final brightness temperature 
(0.5 cm of ponding, α=0.5   with roughness correction)
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Conclusion
• Validation is a necessary step before 

remote sensing can effectively contribute 
to further scientific developments 

• An extreme change in the brightness 
temperature is investigated

• Ponding is shown to be the main reason
• Further investigation is needed to 

determine if ponding is frequent and 
significant 

• Larger scales/satellite applications


